Comparisons of Markov Chain Monte Carlo Convergence Diagnostic Tests for Bayesian Logistic Random Effect Models

نویسنده

  • MEHMET ALI CENGIZ
چکیده

In mixed models, posterior densities are too difficult to work with directly. With the Markov chain Monte Carlo (MCMC) methods, to do statistical inference requires the convergence of the MCMC chain to its stationary distribution. To assess convergence of Markov chain has not a specific way. Assessing convergence of Markov chain has been developed many techniques. Although increasingly popularity MCMC methods, use of MCMC convergence diagnostics is not still common. Usually, the most MCMC users address the convergence problem by applying a diagnostic means by running their samplers. That’s why in this article we discuss the problem of assessing the performance of MCMC algorithms. We compare convergence diagnostic tests to achieve target distribution. Bayesian logistic random effects models are intended to be interpreted with emphasis on mathematical expansions under these techniques. We have used a real data that wants to know what patient and physician factors are most related to whether a patient's lung cancer goes into remission after treatment outcomes and quality of life in patients with lung cancer. Our results show that convergence needs to enough time and experience.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Convergence rates for MCMC algorithms for a robust Bayesian binary regression model

Abstract: Most common regression models for analyzing binary random variables are logistic and probit regression models. However it is well known that the estimates of regression coefficients for these models are not robust to outliers [26]. The robit regression model [1, 16] is a robust alternative to the probit and logistic models. The robit model is obtained by replacing the normal (logistic...

متن کامل

Comparing MCMC and INLA for disease mapping with Bayesian hierarchical models

Introduction Bayesian hierarchical models with random effects are one of the most widely used methods in modern disease mapping, as a superior alternative to standardized ratios. These models are traditionally fitted through Markov Chain Monte Carlo sampling (MCMC). Due to the nature of the hierarchical models and random effects, the convergence of MCMC is very slow and unpredictable. Recently,...

متن کامل

Comparison of two Markov chain Monte Carlo (MCMC) methods

As the world advances, statisticians/mathematicians are being involved into more and more complex surveys for the development of society and human beings. Consequently, these complex survey data requires complicated and high-dimensional models for final analysis. We need sophisticated and efficient statistical/mathematical tools for estimation and prediction of these models. Frequently, we simu...

متن کامل

Adaptive Markov chain Monte Carlo for Bayesian Variable Selection

We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016